Serum amyloid A induces endothelial dysfunction in porcine coronary arteries and human coronary artery endothelial cells.
نویسندگان
چکیده
The objective of this study was to determine the effects and mechanisms of serum amyloid A (SAA) on coronary endothelial function. Porcine coronary arteries and human coronary arterial endothelial cells (HCAECs) were treated with SAA (0, 1, 10, or 25 microg/ml). Vasomotor reactivity was studied using a myograph tension system. SAA significantly reduced endothelium-dependent vasorelaxation of porcine coronary arteries in response to bradykinin in a concentration-dependent manner. SAA significantly decreased endothelial nitric oxide (NO) synthase (eNOS) mRNA and protein levels as well as NO bioavailability, whereas it increased ROS in both artery rings and HCAECs. In addition, the activities of internal antioxidant enzymes catalase and SOD were decreased in SAA-treated HCAECs. Bio-plex immunoassay analysis showed the activation of JNK, ERK2, and IkappaB-alpha after SAA treatment. Consequently, the antioxidants seleno-l-methionine and Mn(III) tetrakis-(4-benzoic acid)porphyrin and specific inhibitors for JNK and ERK1/2 effectively blocked the SAA-induced eNOS mRNA decrease and SAA-induced decrease in endothelium-dependent vasorelaxation in porcine coronary arteries. Thus, SAA at clinically relevant concentrations causes endothelial dysfunction in both porcine coronary arteries and HCAECs through molecular mechanisms involving eNOS downregulation, oxidative stress, and activation of JNK and ERK1/2 as well as NF-kappaB. These findings suggest that SAA may contribute to the progress of coronary artery disease.
منابع مشابه
Receptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein
Objective(s): This study was designed to investigate the effect of receptor for advanced glycation end products (RAGE), S100A12 and C-reactive protein (CRP) on the release of circulating endothelial cells (CECs) from human coronary artery endothelial cells (HCAECs). Materials and Methods: HCAECs were cultured in increasing concentration of CRP (0, 12.5, 25, 50μg/ml) or S100A12 protein (0, 4, 1...
متن کاملGrowth-related oncogene- induces endothelial dysfunction through oxidative stress and downregulation of eNOS in porcine coronary arteries
Bechara C, Wang X, Chai H, Lin PH, Yao Q, Chen C. Growthrelated oncogeneinduces endothelial dysfunction through oxidative stress and downregulation of eNOS in porcine coronary arteries. Am J Physiol Heart Circ Physiol 293: H3088–H3095, 2007. First published September 14, 2007; doi:10.1152/ajpheart.00473.2007.—Growth-related oncogene(GRO) is a member of the CXC chemokine family, which is involve...
متن کاملSoluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells.
The purpose of this study was to determine the effects and mechanisms of sCD40L on endothelial dysfunction in both human coronary artery endothelial cells (HCAECs) and porcine coronary artery rings. HCAECs treated with sCD40L showed significant reductions of endothelial nitric oxide synthase (eNOS) mRNA and protein levels, eNOS mRNA stability, eNOS enzyme activity, and cellular NO levels, where...
متن کاملLysophosphatidylcholine in Oxidized Low-Densit Lipoprotein Increases Endothelial Susceptibility to Polymorphonuclear Leukocyte-Induced Endothelial Dysfunction in Porcine Coronary Arteries Role of Protein Kinase C
We have shown that transferred lysophosphatidylcholine (lysoPC) from oxidized low-density lipoprotein (OxLDL) to endothelial surface membrane activates protein kinase C (PKC) in endothelial cells, suggesting that Ox-LDL could alter endothelial functions through PKC activation. The purposes of the present study were to examine whether the endothelial susceptibility to polymorphonuclear leukocyte...
متن کاملGrowth-related oncogene-alpha induces endothelial dysfunction through oxidative stress and downregulation of eNOS in porcine coronary arteries.
Growth-related oncogene-alpha (GRO-alpha) is a member of the CXC chemokine family, which is involved in the inflammatory process including atherosclerosis. We hypothesized that GRO-alpha may affect endothelial functions in both porcine coronary arteries and human coronary artery endothelial cells (HCAECs). Vasomotor function was analyzed in response to thromboxane A2 analog U-46619 for contract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 295 6 شماره
صفحات -
تاریخ انتشار 2008